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Abstract. Agent-Based Models (ABM) are a class of models which, by sim-
ulating the behaviors of multiple agents (i.e., independent actions, ititerac
and adaptation), aims to emulate and/or predict complex phenomengrmae
gence” of such complex phenomena is often computation intensiveeguites
tools, libraries and frameworks, capable of speeding up and facilitatesign

of complex simulations.

In this paper we present new developments on RslN, that is a distributed
version of MAsON, a well-known and popular library for writing and running
Agent-based Simulations.

The new developments are: a) a tool that allows the parallel exploratitreof
behavior parameter space; b) an infrastructure that improves thegement of
distributed simulations in terms of easy deployment of new simulations, auto-
matic update, versioning control and distributed logging.
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1 Introduction

Agent-based modeling is a style of modeling in which muétiayents and their interac-
tions with each other and their environment are explicélgresented in a program with
the aims of understanding and generating complex phenamenagent-based model
(ABM) consists of: a set of agents, a set of agent relatiggsshihd an environment to
host the agents and where they take action. ABMs have becemeupular in vari-

ous research fields, such as biology[25], ecology, ecorsjftjigolitical science, social
science[15] etc.. A fundamental benefit of ABMs is the disggvand explanation of
emergent behavior. Emergent behaviors of complex systessaterns that do not de-
pend on individual components of a system but are generatttely interaction to one

another. For instance, emergent behavior is ubiquitouslodical systems (chemical



interactions among cells) and in groups of animals (flockihgirds and schooling of
fish).

In [12] the very nature of simulations implemented by a cotapprogram is de-
scribed, such programs are involved in an exploratory m®eéere the model is iter-
atively refined, as the problem it is meant to be simulateeiteb understood. For this
reason the framework which is used must provide facilittedebug the model, support
the re-runs of experiments and to the collection of the gerdrdata.

A common approach for improving the efficiency of ABM is totdilsute the overall
computation on a number abgical ProcessorgLPs). Parallelization and distribution
of the computational load has two important motivationsim Agent-Based Modeling
field:

— thespeedrunning a model faster allows, in the same time, to make nfwugh
exploration of the (possible) complex behavior. An effiti@mulator should allow
to run experiments long enough to make emergent behavivigtsnd;

— thesizeof the models can be crucial to ensure that the emerging bahiavndeed
shown and made evident; when models are too small, some effdets might be
hidden, not evident and/or emerge very late.

Several parallel implementation of ABMs frameworks haverbproposed [5, 6, 8,
19].

A good parallel implementation should face several coifiictssues: (a) balance
the overall load distribution among the LPs; (b) minimize tommunication overhead
due to the interdependencies existing between the tasksitexkon the LPs; (c) syn-
chronize the evolution of the simulation among the LPs thavide the computing
power.

The general behaviors of a simulation associated to an ABiMbeaquite complex
and therefore it is not possible to apply analytical methodsnderstand what is hap-
pening. This is particularly true when one looks at the patans’ space of an ABM: a
common approach is to sample the parameter space in ordgute fiut the behavior
of the model over a wide range of different conditions.

Speeding up such exploration is important for the reseatmmwause the emergence
of some phenomena might be evident just for some specifiessib§the parameters:
small changes made to a single parameter may lead to a radagification of the
dynamics of the whole system.

In this paper we present a tool that increases the suppdhdaxploratory nature of
simulations by implementing a parallel behavioral par@ngpace exploration. Indeed
a parallel architecture can be easily exploited by lettindtiple simulations run at once
with different parameters distribution on multiple maasri3].

An alternative to parallel behavioral parameter spacecgafibn is proposed by the
authors in [11]. They run a simulation and store informatbout its states and transi-
tions between them. Under the assumption that multiple ase®ften similar, they try
to save computing time by reusing event computations doriagithe first simulation.
This approach requires to build aipdateablemodel for the simulation, along with a
comparison predicate in order to evaluate if two states @fmalation are similar (i.e.
applying the same transition to both leads to the same @gistinstate, and therefore



the previously computed destination state can be reusaetliff@rent (a new destination
state have to be computed and the simulation needsupdeted. This kind of frame-

work seems to be effective for computing-intensive simoret but less adaptable to
agent-based massive simulations, due to the difficulty tlol lBucomparison predicate
and to the large memory footprint needed to store the stateasf massive simulation.

2 Distributed Simulation and D-M ASON

Some aspects of ABMs implementation, like the parameterespgploration, can be ef-
fectively parallelizable. Other aspects, like running anes simulation (i.e., simulating
a large number of agents) and/or simulations which deal gathplex agents, that is,
computationally intensive agents, are more difficult to Beflelizable. A common ap-
proach to the parallelization of massive simulations isgsinstance of a more general
problem of parallelizing a sequential computation by divigit into smaller computa-
tions (subtasks) and assigning them to different procdssgmrallel executions. This
two phases represent two key steps in the design of parigtaiitams [16]. The com-
munication and the synchronization between the differabtasks are typically some
of the greatest obstacles in getting good performances.

As an example a simple way to partition the whole computatitm subtasks is to
assign a fixed number of agents to each available LP. Thioappmameagents par-
titioning enables a balanced workload distribution but usually diices a significant
communication overhead (all-to—all communications aggiired to synchronize the
simulation).

Other strategies which partition the work in a smarter wgyhpve been proposed
in order to reduce the time due to the communication and sgnctation between
processes.

Agent-Based Simulations are designed accordingly to aetisevent paradigm
where the simulation time is split in steps nansgdulation stepsoften but not neces-
sarily, of the same duration. So, as the simulation advaticestep number increases.

We used D-M\SON [6] a general purpose framework for discrete-event ABMs.
D-MASON enlists the aid of two or more LPs to carry out the simulatesch of the
LPs is derived from MsoN and is in charge of a portion of the set of the agents.

MASON[17, 18] toolkit is a discrete-event simulation core andigigzation library
written in Java, designed to be used for a wide range of ABMs.tdolkit is composed
of two independent layers: tr@mulationlayer and thevisualizationlayer. The main
reasons that suggested the development of a distributetresf MASON are:

— MAaAsoN is one of the most expressive and efficient library for ABMs (@ported
by many reviews [2, 20, 22]);

— MASON architecture, that clearly separates visualization byukation, greatly
helped during the process of development of a distributesiae of the library[17,
18];

— the significant amount of research and simulations alreadgemt in MASON,
which can be easily ported to D-ASON, makes it particularly cost effective for
the scientists.
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Fig. 1. The Architecture of D-MSON.
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Considering that most ABMs are inspired by natural modelsrelagents are placed
in a bi-dimensional (or tri-dimensional) space (some exXaspre [10, 13, 14, 21, 24])
and agents’ communications/interactions are limited toelmited area of interest
(AOI), D-MAsON exploits a space partitioning approach: the space to belaiatu
(the field) is partitioned into regions (see Fig. 1.(a)). lcaegion, together with the
agents it contains, is assigned to a LP; each LP is in chargamotilating the agents
that belong to the assigned region, handling the migratfoagents between regions
and managing the synchronization between neighboringmedisee Fig. 1.(b)).

Since the AOI extension of an agent is small compared withsthe of a region
it belongs to, the communication is often limited to localss@ges within the same
LP. LPs in charge of the simulation of neighboring regions, lacally synchronized
in order to let the simulation run consistently. LPs comroateé by using a publish—
subscribe mechanism design pattern: a multicast chanassigned to each region.

D-MAsON is released under a Free and Open Software license and liatdeat

[9].
3 D-MASON enhancements

In this section we describe the extensions of the BgdN system management. These
extensions add new features to DABDON aimed at improving the usability of the envi-
ronment for the researcher who is designing a simulationeXtended D-MSON by
adding two facilities: a tool for the parallel exploratiohtbe behavior parameter space
and an infrastructure that improves the management oflalisid simulations.

3.1 Exploring parameter space

As observed in Section 1, the exploration of the paramewgate requires the exe-
cution of a large number of simulations with different paedens distributions [3, 23].
These executions are independent therefore can be safabdcaut in parallel.

In the following we present a semi-automatic tool that sufgsuch exploration.
The tool performs three functionalities: selection of paeters, management of param-
eters and execution.



Selection of parameterD-MASON allows the programmer to select, via Jawano-
tations which parameter of the simulation can be explored. Thenaroger can also
annotate, for each parameter, its domain and/or its sugygatue. A portion of an an-
notated source Java file is in Figure 2. In this specific casth, the parameters dt h,
hei ght andnuntl ocker s are annotated using the keywa@at ch. Moreover for
the parametehnei ght the programmer has also defined the domait (— 300) and
the suggested valueq0).

public classDFI ocker s extendsDi st ri but edSt at e<Doubl e2D>

{

private static final longer i al Ver si onUl D=1L;
publicDCont i nuous2Df | ockers;

private static booleansTor oi dal =true

@at ch

public doublewi dt h = 150;

@at ch(
domai n ="100-300',
suggest edVal ue ="250'

)
public doublehei ght = 150;

@at ch
public intnuntl ocker s = 20;

Fig. 2. A portion of a source file with annotations.

Management of parameter®-MAsON includes a tool, nameBatch Wizard which
takes in input the j ar file of a specific D-MASON simulation and extracts the list
of annotated parameters. Then, by using the applicatioitigepin Figure 3, the user
is able to define for each parameter the set of values to bgzath(to explore the
parameter space) and the number of runs to be executed fofieed set of parameter
(to evaluate the stability of the model). Each parametelbesexplored in four different
ways:

Fixed: the parameter has a single fixed value, which can be the oestagl by the
programmer by annotations or another value chosen by thie use

By values: the user provides a set of values to be evaluated.

Range: the user defines a range of values by providing a lower ent@inncrement
and the upper endpoint.

Distribution: the values of the parameter are picked from a probabilityridigion.
In this case the number of runs is used to pick different \ald&ree probability
distributions are currently availableniform, normaland exponential For each
probability distributions, its parameters (for instaneean and standard deviation
for the normal distribution) can also be selected by the.user
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Fig. 3. The management of parameters via the Batch Wizard

The last two options (Range and Distribution) are availally for numeric parame-
ters. During the setup phase of the simulation the tool plex/to the user the number
of tests necessary, for the exploration of the parametetkgicurrent configuration.

Other options are the number of LRg p for each run and the possibility of en-
abling or not the load balancing functionality, see [4]. Theput of the Batch Wizard
is an XML file similar to the one in Figure 4.

<?2ml version="1.0" encoding=UTF-8" ?>
<Batch>
<simulationName-vanpi r es.j ar </simulationNamg-
<neededWorkers10</neededWorkers
<isBalanced-f al se</isBalanced
<simulationParans
<paramFixechame ="numRooststype ="int" runs ="10" mode ="fixed">
<value>10</value>
</paramFixed-
<paramListname ='numBat$ type ="int" runs ="5" mode ="list">
<item>200</item>
<item>2000</item>
</paramList>

</Batch>
Fig. 4. An example of XML file generated by the Batch Wizard.



Execution. At the execution time the XML file described above is read aalithated
and the system prepares the sets of simulations to run. Ttemsybuilds two sets: a
test listwhich is the list of all the configurations to be executed, andPs listwhich

is a partition of available LPs, such that each set in thecbsitains at least; » LPs.
The user can choose whether the execution must be sequanparallel. During a
parallel batch execution each set of LPs, in the LPs listcabes at the same time a
different test. However, different runs will use, concuithg a single communication
server (CS).

The execution of a batch is performed by sev&atch Executorgon sequential
batch executions a single Batch Executor is used). A Batat@xr is in charge of
starting and stopping a single run of a simulation. Brieflpagéch executor manages a
set of LPs and as soon as the execution of the simulationriates, it picks another
test from the test list and starts its execution (see Figure 5
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Fig. 5. Batch execution

3.2 A novel Management Infrastructure

We present now a novel infrastructure that improves the gemant of distributed sim-
ulations in terms of easy deployment of new simulationsymatiic update, versioning
control and distributed logging. The novel architecturdepicted in Figure 6. An FTP
Server has been added to the system with the goal of enablngxchange of files
between the console (master) and the LPs. The use of the Fid? seexplained in the
following.

Deploy of new simulations and LP software update First of all the FTP server is ex-
ploited for the deployment of new simulations. In the pregoersion of D-M\SON (V.
2.0) , simulations were encoded within the DAMON package, and consequently the
development of a new simulation required to rebuild therergackage and restarting
the entire system (i.e. Console, LPs and CS). In this enliaversion of D-MASON(V.
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Fig. 6. The novel infrastructure

2.1), new simulations are compiled separately injar file and are added to the sys-
tem via the Console application (see Figure 7). Thear file and a corresponding
digest file are store into a specific directory of the FTP SeiMeen the Console appli-
cation sends, via the CS, a message to the LPs, containingathe of the simulation
file, the address and the port of the FTP server. Each LP theckathecks whether it
already has that specific simulation and, if so, it checkisguhe digest file, if it has the
correct version. If the LP does not have the simulation fitef the digest files do not
match (that is, the new simulation file is an update of a previeersion), then the LP
download the simulation file from the FTP server and, in theeaaf update, it replaces
the previous file.

A similar approach is used to update the software runningamh &P. Since the
upgrade processes affects only the LPs connected to tlegyse have also developed
a mechanism that allows each LP, during the connection teytstem, to check whether
there have been updates or new simulation files have beeoygeplMoreover, before
starting a new simulation the console checks that all thedrBsaligned to the same
software version and the same simulation file.

Distributed Logging. The novel management infrastructure is also exploited teato
and aggregate the log files generated by each LP. When a sionugtompleted, the

Console sendsgathercommand to the LPs. When the LPs receive this command, they

upload the log files on the FTP server, so that they can be gafgeinto a single file
that can be used for subsequent analysis.

4 Discussion and conclusion

This paper reports on an currently undergoing project, BsiN, that has been devel-
oped with the purpose of speeding up the performancesagdd, a very well known
and quite widespread framework for ABMs.
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This work has been motivated by the the need for a system rearmag facility
that is extremely important for the deployment, the tuning the analysis of complex
simulations on multiple machines.

We have shown a) a tool that allows the parallel exploraticth@® behavior param-
eter space, and b) a simple architecture that speeds theydegit and the analysis of
distributed simulations.
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