
Supporting the exploratory nature of simulations in
D-M ASON

Gennaro Cordasco1, Rosario De Chiara2,
Fabio Fulgido3, and Mario Fiore Vitale3

1 Dipartimento di Psicologia
Seconda Università degli Studi di Napoli, Italy

gennaro.cordasco@unina2.it
2 Centro Ricerca e Sviluppo

Poste Italiane, Italy
dechia24@posteitaliane.it

3 ISISLab - Dipartimento di Informatica
Universit̀a di Salerno, Italy

{f.fulgido,mvitale86}@gmail.com

Abstract. Agent-Based Models (ABM) are a class of models which, by sim-
ulating the behaviors of multiple agents (i.e., independent actions, interactions
and adaptation), aims to emulate and/or predict complex phenomena. The“emer-
gence” of such complex phenomena is often computation intensive and requires
tools, libraries and frameworks, capable of speeding up and facilitate thedesign
of complex simulations.
In this paper we present new developments on D-MASON, that is a distributed
version of MASON, a well-known and popular library for writing and running
Agent-based Simulations.
The new developments are: a) a tool that allows the parallel exploration ofthe
behavior parameter space; b) an infrastructure that improves the management of
distributed simulations in terms of easy deployment of new simulations, auto-
matic update, versioning control and distributed logging.

Keywords: Agent-Based Simulation, Distributed Systems, System Management.

1 Introduction

Agent-based modeling is a style of modeling in which multiple agents and their interac-
tions with each other and their environment are explicitly represented in a program with
the aims of understanding and generating complex phenomena. An agent-based model
(ABM) consists of: a set of agents, a set of agent relationships and an environment to
host the agents and where they take action. ABMs have become very popular in vari-
ous research fields, such as biology[25], ecology, economics[1], political science, social
science[15] etc.. A fundamental benefit of ABMs is the discovery and explanation of
emergent behavior. Emergent behaviors of complex systems are patterns that do not de-
pend on individual components of a system but are generated by their interaction to one
another. For instance, emergent behavior is ubiquitous in biological systems (chemical



interactions among cells) and in groups of animals (flockingof birds and schooling of
fish).

In [12] the very nature of simulations implemented by a computer program is de-
scribed, such programs are involved in an exploratory process where the model is iter-
atively refined, as the problem it is meant to be simulated is better understood. For this
reason the framework which is used must provide facilities to debug the model, support
the re-runs of experiments and to the collection of the generated data.

A common approach for improving the efficiency of ABM is to distribute the overall
computation on a number ofLogical Processors(LPs). Parallelization and distribution
of the computational load has two important motivations in the Agent-Based Modeling
field:

– thespeedrunning a model faster allows, in the same time, to make more thorough
exploration of the (possible) complex behavior. An efficient simulator should allow
to run experiments long enough to make emergent behaviours evident;

– thesizeof the models can be crucial to ensure that the emerging behavior is indeed
shown and made evident; when models are too small, some of theeffects might be
hidden, not evident and/or emerge very late.

Several parallel implementation of ABMs frameworks have been proposed [5, 6, 8,
19].

A good parallel implementation should face several conflicting issues: (a) balance
the overall load distribution among the LPs; (b) minimize the communication overhead
due to the interdependencies existing between the tasks executed on the LPs; (c) syn-
chronize the evolution of the simulation among the LPs that provide the computing
power.

The general behaviors of a simulation associated to an ABM can be quite complex
and therefore it is not possible to apply analytical methodsto understand what is hap-
pening. This is particularly true when one looks at the parameters’ space of an ABM: a
common approach is to sample the parameter space in order to figure out the behavior
of the model over a wide range of different conditions.

Speeding up such exploration is important for the researcher because the emergence
of some phenomena might be evident just for some specific subsets of the parameters:
small changes made to a single parameter may lead to a radicalmodification of the
dynamics of the whole system.

In this paper we present a tool that increases the support forthe exploratory nature of
simulations by implementing a parallel behavioral parameter space exploration. Indeed
a parallel architecture can be easily exploited by letting multiple simulations run at once
with different parameters distribution on multiple machines [3].

An alternative to parallel behavioral parameter space exploration is proposed by the
authors in [11]. They run a simulation and store informationabout its states and transi-
tions between them. Under the assumption that multiple runsare often similar, they try
to save computing time by reusing event computations done during the first simulation.
This approach requires to build anupdateablemodel for the simulation, along with a
comparison predicate in order to evaluate if two states of a simulation are similar (i.e.
applying the same transition to both leads to the same destination state, and therefore



the previously computed destination state can be reused) ordifferent (a new destination
state have to be computed and the simulation needs to beupdated). This kind of frame-
work seems to be effective for computing-intensive simulations but less adaptable to
agent-based massive simulations, due to the difficulty to build a comparison predicate
and to the large memory footprint needed to store the state ofsuch massive simulation.

2 Distributed Simulation and D-M ASON

Some aspects of ABMs implementation, like the parameter space exploration, can be ef-
fectively parallelizable. Other aspects, like running massive simulation (i.e., simulating
a large number of agents) and/or simulations which deal withcomplex agents, that is,
computationally intensive agents, are more difficult to be parallelizable. A common ap-
proach to the parallelization of massive simulations is just an instance of a more general
problem of parallelizing a sequential computation by dividing it into smaller computa-
tions (subtasks) and assigning them to different processesfor parallel executions. This
two phases represent two key steps in the design of parallel algorithms [16]. The com-
munication and the synchronization between the different subtasks are typically some
of the greatest obstacles in getting good performances.

As an example a simple way to partition the whole computationinto subtasks is to
assign a fixed number of agents to each available LP. This approach namedagents par-
titioning enables a balanced workload distribution but usually introduces a significant
communication overhead (all–to–all communications are required to synchronize the
simulation).

Other strategies which partition the work in a smarter way [7] have been proposed
in order to reduce the time due to the communication and synchronization between
processes.

Agent-Based Simulations are designed accordingly to a discrete-event paradigm
where the simulation time is split in steps namedsimulation steps, often but not neces-
sarily, of the same duration. So, as the simulation advances, the step number increases.

We used D-MASON [6] a general purpose framework for discrete-event ABMs.
D-MASON enlists the aid of two or more LPs to carry out the simulation:each of the
LPs is derived from MASON and is in charge of a portion of the set of the agents.

MASON [17, 18] toolkit is a discrete-event simulation core and visualization library
written in Java, designed to be used for a wide range of ABMs. The toolkit is composed
of two independent layers: thesimulationlayer and thevisualizationlayer. The main
reasons that suggested the development of a distributed version of MASON are:

– MASON is one of the most expressive and efficient library for ABMs (as reported
by many reviews [2, 20, 22]);

– MASON architecture, that clearly separates visualization by simulation, greatly
helped during the process of development of a distributed version of the library[17,
18];

– the significant amount of research and simulations already present in MASON,
which can be easily ported to D-MASON, makes it particularly cost effective for
the scientists.



Fig. 1.The Architecture of D-MASON.

Considering that most ABMs are inspired by natural models where agents are placed
in a bi-dimensional (or tri-dimensional) space (some examples are [10, 13, 14, 21, 24])
and agents’ communications/interactions are limited to a delimited area of interest
(AOI), D-M ASON exploits a space partitioning approach: the space to be simulated
(the field) is partitioned into regions (see Fig. 1.(a)). Each region, together with the
agents it contains, is assigned to a LP; each LP is in charge of: simulating the agents
that belong to the assigned region, handling the migration of agents between regions
and managing the synchronization between neighboring regions (see Fig. 1.(b)).

Since the AOI extension of an agent is small compared with thesize of a region
it belongs to, the communication is often limited to local messages within the same
LP. LPs in charge of the simulation of neighboring regions, are locally synchronized
in order to let the simulation run consistently. LPs communicate by using a publish–
subscribe mechanism design pattern: a multicast channel isassigned to each region.

D-MASON is released under a Free and Open Software license and is available at
[9].

3 D-MASON enhancements

In this section we describe the extensions of the D-MASON system management. These
extensions add new features to D-MASON aimed at improving the usability of the envi-
ronment for the researcher who is designing a simulation. Weextended D-MASON by
adding two facilities: a tool for the parallel exploration of the behavior parameter space
and an infrastructure that improves the management of distributed simulations.

3.1 Exploring parameter space

As observed in Section 1, the exploration of the parameters’space requires the exe-
cution of a large number of simulations with different parameters distributions [3, 23].
These executions are independent therefore can be safely carried out in parallel.

In the following we present a semi-automatic tool that supports such exploration.
The tool performs three functionalities: selection of parameters, management of param-
eters and execution.



Selection of parameter.D-MASON allows the programmer to select, via Javaanno-
tations, which parameter of the simulation can be explored. The programmer can also
annotate, for each parameter, its domain and/or its suggested value. A portion of an an-
notated source Java file is in Figure 2. In this specific case, both the parameterswidth,
height andnumFlockers are annotated using the keyword@batch. Moreover for
the parameterheight the programmer has also defined the domain (100 − 300) and
the suggested value (250).

public classDFlockers extendsDistributedState<Double2D>
{

private static final longserialVersionUID = 1L;
publicDContinuous2D flockers;
private static booleanisToroidal=true;
@batch
public doublewidth = 150;
@batch(

domain = ''100−300'',
suggestedValue = ''250''

)
public doubleheight = 150;
@batch
public intnumFlockers = 20;

...
}

Fig. 2. A portion of a source file with annotations.

Management of parameters.D-MASON includes a tool, namedBatch Wizard, which
takes in input the.jar file of a specific D-MASON simulation and extracts the list
of annotated parameters. Then, by using the application depicted in Figure 3, the user
is able to define for each parameter the set of values to be analyzed (to explore the
parameter space) and the number of runs to be executed for each fixed set of parameter
(to evaluate the stability of the model). Each parameter canbe explored in four different
ways:

Fixed: the parameter has a single fixed value, which can be the one suggested by the
programmer by annotations or another value chosen by the user.

By values: the user provides a set of values to be evaluated.
Range: the user defines a range of values by providing a lower endpoint, an increment

and the upper endpoint.
Distribution: the values of the parameter are picked from a probability distribution.

In this case the number of runs is used to pick different values. Three probability
distributions are currently available:uniform, normaland exponential. For each
probability distributions, its parameters (for instance,mean and standard deviation
for the normal distribution) can also be selected by the user.



Fig. 3.The management of parameters via the Batch Wizard

The last two options (Range and Distribution) are availableonly for numeric parame-
ters. During the setup phase of the simulation the tool provides to the user the number
of tests necessary, for the exploration of the parameters, in the current configuration.

Other options are the number of LPsnLP for each run and the possibility of en-
abling or not the load balancing functionality, see [4]. Theoutput of the Batch Wizard
is an XML file similar to the one in Figure 4.

<?xml version=''1.0'' encoding=''UTF−8'' ?>
<Batch>
<simulationName>vampires.jar</simulationName>
<neededWorkers>10</neededWorkers>
<isBalanced>false</isBalanced>
<simulationParams>
<paramFixedname =''numRoosts'' type =''int'' runs =''10'' mode =''fixed''>
<value>10</value>

</paramFixed>
<paramListname =''numBats'' type =''int'' runs =''5'' mode =''list''>
<item>200</item>

<item>2000</item>

</paramList>
...

</Batch>

Fig. 4.An example of XML file generated by the Batch Wizard.



Execution. At the execution time the XML file described above is read and validated
and the system prepares the sets of simulations to run. The system builds two sets: a
test listwhich is the list of all the configurations to be executed, anda LPs list which
is a partition of available LPs, such that each set in the listcontains at leastnLP LPs.
The user can choose whether the execution must be sequentialor parallel. During a
parallel batch execution each set of LPs, in the LPs list, executes at the same time a
different test. However, different runs will use, concurrently, a single communication
server (CS).

The execution of a batch is performed by severalBatch Executors(on sequential
batch executions a single Batch Executor is used). A Batch Executor is in charge of
starting and stopping a single run of a simulation. Briefly, abatch executor manages a
set of LPs and as soon as the execution of the simulation terminates, it picks another
test from the test list and starts its execution (see Figure 5).

Fig. 5.Batch execution

3.2 A novel Management Infrastructure

We present now a novel infrastructure that improves the management of distributed sim-
ulations in terms of easy deployment of new simulations, automatic update, versioning
control and distributed logging. The novel architecture isdepicted in Figure 6. An FTP
Server has been added to the system with the goal of enabling the exchange of files
between the console (master) and the LPs. The use of the FTP server is explained in the
following.

Deploy of new simulations and LP software update.First of all the FTP server is ex-
ploited for the deployment of new simulations. In the previous version of D-MASON (v.
2.0) , simulations were encoded within the D-MASON package, and consequently the
development of a new simulation required to rebuild the entire package and restarting
the entire system (i.e. Console, LPs and CS). In this enhanced version of D-MASON(v.



Fig. 6. The novel infrastructure

2.1), new simulations are compiled separately in a.jar file and are added to the sys-
tem via the Console application (see Figure 7). The.jar file and a corresponding
digest file are store into a specific directory of the FTP Server. Then the Console appli-
cation sends, via the CS, a message to the LPs, containing thename of the simulation
file, the address and the port of the FTP server. Each LP then check checks whether it
already has that specific simulation and, if so, it checks, using the digest file, if it has the
correct version. If the LP does not have the simulation file, or if the digest files do not
match (that is, the new simulation file is an update of a previous version), then the LP
download the simulation file from the FTP server and, in the case of update, it replaces
the previous file.

A similar approach is used to update the software running on each LP. Since the
upgrade processes affects only the LPs connected to the system, we have also developed
a mechanism that allows each LP, during the connection to thesystem, to check whether
there have been updates or new simulation files have been deployed. Moreover, before
starting a new simulation the console checks that all the LPsare aligned to the same
software version and the same simulation file.

Distributed Logging. The novel management infrastructure is also exploited to collect
and aggregate the log files generated by each LP. When a simulation is completed, the
Console sends agathercommand to the LPs. When the LPs receive this command, they
upload the log files on the FTP server, so that they can be aggregated into a single file
that can be used for subsequent analysis.

4 Discussion and conclusion

This paper reports on an currently undergoing project, D-MASON, that has been devel-
oped with the purpose of speeding up the performances of MASON, a very well known
and quite widespread framework for ABMs.



Fig. 7.Deploy of a new simulation.

This work has been motivated by the the need for a system management facility
that is extremely important for the deployment, the tuning and the analysis of complex
simulations on multiple machines.

We have shown a) a tool that allows the parallel exploration of the behavior param-
eter space, and b) a simple architecture that speeds the deployment and the analysis of
distributed simulations.

References

1. Agents of Change. The economist, July 22nd, 2010.
2. Matthew Berryman. Review of Software Platforms for Agent Based Models. Technical

Report DSTO-GD-0532, Australian Government, Department of Defence, 2008.
3. Benôıt Calvez and Guillaume Hutzler. Parameter space exploration of agent-based models.

In Proceedings of the 9th international conference on Knowledge-Based Intelligent Informa-
tion and Engineering Systems, KES’05, pages 633–639, 2005.

4. Michele Carillo, Gennaro Cordasco, Rosario De Chiara, FrancescoRaia, Vittorio Scarano,
and Flavio Serrapica. Enhancing the Performances of D-MASON - A Motivating Example.
In SIMULTECH , pages 137-143. SciTePress, pages 137–143, 2012.

5. Nicholson Collier and Michael North. Parallel agent-based simulation withRepast for High
Performance Computing.SIMULATION: Transactions of the Society for Modeling and Sim-
ulation International, online:, 2012.

6. Gennaro Cordasco, Rosario De Chiara, Ada Mancuso, Dario Mazzeo, Vittorio Scarano, and
Carmine Spagnuolo. Bringing together efficiency and effectiveness indistributed simula-
tions: the experience with D-MASON.SIMULATION: Transactions of The Society for Mod-
eling and Simulation International, online:, 2013.

7. Biagio Cosenza, Gennaro Cordasco, Rosario De Chiara, and VittorioScarano. Distributed
Load Balancing for Parallel Agent-based Simulations. InProc. of the 19th Euromicro Inter-
national Conference on Parallel, Distributed and Network-Based Computing (PDP 2011),
2011.



8. Christophe Deissenberg, Sander van der Hoog, and Herbert Dawid. Eurace: A massively par-
allel agent-based model of the european economy.Applied Mathematics and Computation,
204:541–552, 2008.

9. Distributed-Mason Project. http://www.isislab.it/projects/dmason/, 2011.
10. Piter Dykstra, Corinna Elsenbroich, Wander Jager, Gerard Renardel de Lavalette, and Rineke

Verbrugge. Put your money where your mouth is: Dial, a dialogical model for opinion
dynamics.Journal of Artificial Societies and Social Simulation, 16(3):4, 2013.

11. Steve L. Ferenci, Richard M. Fujimoto, Mostafa H. Ammar, Kalyan Perumalla, and
George F. Riley. Updateable simulation of communication networks. InProceedings of
the sixteenth workshop on Parallel and distributed simulation, PADS ’02, pages 107–114,
Washington, DC, USA, 2002. IEEE Computer Society.

12. Nigel Gilbert and Klaus G Troitzsch.Simulation for the Social Scientist. Open University
Press, 2005.

13. Max Hartshorn, Artem Kaznatcheev, and Thomas Shultz. The evolutionary dominance of
ethnocentric cooperation.Journal of Artificial Societies and Social Simulation, 16(3):7,
2013.

14. Erez Hatna and Itzhak Benenson. The schelling model of ethnic residential dynamics: Be-
yond the integrated - segregated dichotomy of patterns.Journal of Artificial Societies and
Social Simulation, 15(1):6, 2012.

15. Simon A. Levin Joshua M. Epstein and Series Editors Steven H. Strogatz, editors.Genera-
tive Social Science: Studies in Agent-Based Computational Modeling. Princeton University
Press, 2007.

16. Zhiwei Xu Kai Hwang. Scalable parallel computing: technology, architecture, program-
ming. WCB/McGraw-Hill, 1998.

17. Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, and Keith Sullivan. MASON: A new multi-
agent simulation toolkit. InProceedings of the SwarmFest Workshop, Ann Arbor (Michigan),
USA. May 9-11, 2004.

18. Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. MA-
SON: A Multiagent Simulation Environment.Simulation, 81(7):517–527, 2005.

19. Mikola Lysenko and Roshan M. D’Souza. A framework for megascale agent based model
simulations on graphics processing units.Journal of Artificial Societies and Social Simula-
tion, 11(4):, 2008.

20. Robert Najlis, Marco A. Janssen, and Dawn C. Parkerx. Software tools and communication
issues. InProc. Agent-Based Models of Land-Use and Land-Cover Change Workshop, pages
17–30, 2001.

21. Amit Patel, Andrew Crooks, and Naoru Koizumi. Slumulation: An agent-based modeling
approach to slum formations.Journal of Artificial Societies and Social Simulation, 15(4):2,
2012.

22. Steven F. Railsback, Steven L. Lytinen, and Stephen K. Jackson. Agent-based simulation
platforms: Review and development recommendations.Simulation, 82:609–623, September
2006.

23. Attila Szab, Rajmund Bocsi, Gbor Ferschl, Balzs Blint, and Lszl Gulys.Experiments with
complex agent-based systems using the meme tool: A case study.ASME, 2009.

24. Andrew White. An abstract model showing that the spatial structure of social networks
affects the outcomes of cultural transmission processes.Journal of Artificial Societies and
Social Simulation, 16(3):9, 2013.

25. William C. Wimsatt. False models as means to truer theories, pages 23 – 55. Oxford
University Press, London, 1987 1987.


